Транспирация

Автор: Э.Лии и А.В. Куренин   

   Как растение поглощает воду и какое влияние оказывают экологические факторы на корнеобитаемую среду и состояние корневой системы? Казалось бы, эти физиологические процессы подробно изучены, однако имеется целый ряд нюансов, которые необходимо учитывать в современных технологиях возделывания культур защищенного грунта. Сатья описывает некоторые физиологические процессы поглощения растением воды и их связь с микроклиматом в теплице.


   Известно, что вода перемещается по растению от корней к листьям по сосудам ксилемы и движущей силой этого процесса является транспирация.


   Около 90% всей поглощенной растением воды тратится на испарение и только 10% используется непосредственно для физиологических процессов, в том числе фотосинтеза.


   Для чего растение испаряет воду? Кубометр воздуха в теплице,при температуре 20о С содержит максимум 17 г влаги. Активно растущее растение может испарять в солнечный день с суммой прихода солнечной радиации 2000 Дж/см2 около 4,5 л воды на 1 м2 поверхности теплицы. Вода, испаряемая растением через листовую поверхность, охлаждает воздух в теплице примерно так же, как туманообра-зующая установка высокого давления. Действительно, температура транспирирующего листа может быть на 2-6°С ниже, чем нетранс-пирирующего. Именно поэтому в жаркие летние месяцы растения должны иметь хорошо работающую, мощную и здоровую корневую систему и достаточное количество листьев, чтобы обеспечить необходимую интенсивность охлаждения и, соответственно, урожай и качество продукции.


   С другой стороны, транспирация культуры из-за увеличения количества влаги в воздухе при ограниченной вентиляции может стать причиной определенныхпроблем. В период затяжной пасмурной погоды влажность воздуха может превышать оптимальные показатели, установленные агрономом. В таких случаях, связанных к тому же с высокой опасностью распространения возбудителей болезней, адекватная работа корневой системы еще более важна, поскольку поможет избежать серьезных потерь от грибных заболеваний, например, от серой гнили.
   Понимание взаимодействия корнеобитаемой среды и микроклимата необходимо для работы агронома. Только в сбалансированном состоянии эти системы могут обеспечить оптимальный результат.

 

Схема водного транспорта в растении

  Вода поступает в растение благодаря отрицательному давлению, создающемуся в сосудах ксилемы. Движущей силой этого процесса является транспирация. Другой движущей силой будет пассивный, осмотический транспорт.


Транспирация


   Транспирация начинается с испарения воды через устьичные щели, расположенные преимущественно с нижней стороны листа. Процесс происходит когда устьица открыты для обеспечения газообмена СО2 и О2, необходимых для процесса жизнедеятельности растения и протекания фотосинтеза. Испарившаяся через устьица влага замещается влагой из нижерасположенных смежных клеток сосудов ксилемы. В эти клетки влага движется из соседних клеток и т. д. Стенки клеток проводящей системы изгибаются внутрь, создается отрицательное давление, которое заставляет воду двигаться вверх по растению от корней к листьям. Таким образом, приходит в движение весь «водяной столб», от устьичных клеток до клеток корневых волосков.

transpiration


Роль устьиц в транспирации


   Основной путь потери воды растением — транспирация, но для процесса фотосинтеза необходим обмен углекислым газом и кислородом с окружающим воздухом через открытые устьица. Из этого следует, что для нормальной и продуктивной работы растения должен поддерживаться определенный баланс между потерей жидкости и потреблением С02 через устьица. Растение регулирует этот процесс степенью открытия устьичных щелей. Открытие и закрытие устьиц регулируется светом. Другие параметры микроклимата также оказывают существенное влияние на интенсивность транспирации. Один из главных — относительная влажность воздуха, а исходя из требований растения — ДДВП (дефицит давления водяного пара). ДДВП это разница между давлением водяного пара при максимальном насыщении (такие условия обычно создаются внутри устьич-ной камеры) и в наружном воздухе. Наряду с температурой (тепловая энергия) эти параметры (ДДВП и свет) играют ключевую роль в определении интенсивности транспирации, времени ее начала и окончания. Все это имеет непосредственную связь с условиями в корнеобитаемой среде.
   Устьица открываются, когда утром на лист падают лучи солнца. В условиях теплицы транспирация начинается ориентировочно при 150-200 Вт/м2 интенсивности солнечного света.
   По разнице температуры поверхностей листа томата и датчика (нетранспирирующая поверхность), которая является результатом охлаждения растения после начала транспирации, четко определяется момент начала транспирации.
   Старт первого полива должен совпадать с началом активной транспирации. Этот интервал времени также непосредственно связан со стратегией управления температурой отопительных труб в утренний период. Именно поэтому применяется тактика снижения минимальной температуры труб «по свету» в пределах 200-400 Вт/м2, а не по времени суток. Используя установки «минимальной температуры трубы» в условиях с интенсивностью прихода солнечной радиации выше 400 Вт/м2, агроном столкнется лишь с допол-нительными расходами на отопление, транспирация уже будет инициирована солнечным светом, и необходимость в дополнительном стимулировании с помощью нижних труб обогрева отпадает. Однако этолишьобщееправило. Например, при низкой температуре субстрата срок начала транспирации может изменяться. При -12 оС транспирация начинается на 2 ч позже по сравнению с ситуацией, когда субстрат имеет температуру -17оС. В таких случаях время первого полива и установки по минимальной температуре труб должно быть соответственно изменено.
Интенсивность транспирации в течение дня зависит прежде всего от изменений параметров микроклимата в теплице. Чем ниже относительная влажность воздуха и выше температура, тем интенсивнее процесс транспирации. Ниже рассматриваются две стандартные ситуации:

 Солнечный день

   В течение дня, если потребление воды корневой системой отстает от уровня транспирации, клетки растения теряют тургор и устьица закрываются, уровень транс-пирации резко снижается, так растение предотвращает увядание. Кроме транспирации, сильно снижается интенсивность фотосинтеза, и, в свою очередь, качество плодов и урожайность резко падают. Температура растения и воздуха в теплице возрастает, как следствие, усиливается дыхание растения, оно начинает «сжигать» само себя. Именно по этой причине необходимо поддерживать работу корневой системы в активном состоянии. Это особенно важно в весенний период, при росте прихода солнечной радиации.
   Также в условиях хорошей освещенности (от 800-1000 Дж/см2 в день) рекомендуется привязывать поливы к суммарному приходу солнечной радиации.
   Количество раствора на 1 Дж при такой корректировке зависит от типа культивационного сооружения и используемого вида датчика солнечной радиации.
   В экстремальных условиях, которые характерны для многих Российских регионов, полезно использовать показатель водопотребления культуры (разница между поливом и дренажом) как индикатор состояния растений. Это поможет правильно использовать системы зашторивания и испарительного охлаждения. Использование обеих этих систем не должно приводить к резкому снижению уровня транспирации культуры и, соответ-ственно, водопотребления, главная цель их применения — помощь растению, и особенно корневой системе, в периоды с высокими уровнями транспирации. При неправильном использовании систем СИО можно получить ослабленную культуру, а чрезмерное использование затеняющих экранов приводит к снижению урожайности, так как свет определяет урожайность!


Пасмурный день

   В пасмурные дни транспирация низка, поэтому время первого и особенно последнего поливов соответственно должно быть изменено. Это легко сделать, используя современные климатические компьютеры совместно с датчиками влажности субстрата и регистрации прихода солнечной радиации.
   В пасмурные дни установки «минимальной температуры труб» (50-60 оС) могут быть использованы в течение нескольких часов после полудня совместно с вентиляцией, чтобы стимулировать транспирацию. Это гарантирует то, что необходимые элементы питания все-таки попадают в растение, и можно контролировать его развитие, направляя по вегетативному или генеративному пути. Следует помнить, что слишком активная сти-муляция транспирации с использованием температуры в нижнем контуре отопления может привести к резкому росту относительной влажности воздуха из-за резкого роста транспирации. Для контроля влажности обычно бывает вполне достаточно температуры нижнего контура -40 °С. Учитывая нынешние цены на газ, минимальная температура нижнего контура не должна превышать 45 °С, во всяком случае часто. Установка тем-пературы 35 °С при автоматическом увеличении на 10оС по влажности воздуха в пределах 80-90% вполне приемлема.


   Внимательно анализируйте графики компьютера, управляющего микроклиматом, внимательно отслеживайте взаимосвязь влажности воздуха и температуры нижнего контура. Часто изменение температуры труб обогрева с 40оС на 60оС не приводит к желаемому изменению влажности воздуха, а затраты при этом растут.


   Обязательным условием снижения влажности воздуха являются приоткрытые фрамуги для выхода влаги из теплицы. Поэтому задавайте программу управления отоплением и вентиляцией так, чтобы их графики были близки друг к другу, это создаст в теплице активный микроклимат. В периоды с низкой температурой наружного воздуха (<13 оС) необходимо привязать установки по вентиляции к наружному климату. Это предотвратит попадание холодного воздуха на растения и, следовательно, отрицательное влияние на транспирацию культуры. В пасмурные периоды общее количество воды, подаваемое рас-тению, определяется количеством поливов, которые происходят в определенное время. Так при сочетании позднего начала и раннего окончания поливов с установками «минимальной температуры трубы» важно убедиться в достаточной продолжительности поливного дня, чтобы избежать таких физиологических проблем, как неравномерное окрашивание и растрескивание плодов. Признаком того, что максимальный перерыв между поливами слишком короток, является резкое падение ЕС субстрата.


Роль активного водопотребления


   Растение может поглощать воду и в условиях отсутствия транспирации. Этот процесс называют активным водопоглощением, а результатом этого будет избыточное корневое давление. Корневое давление возрастает в ночное время и при низкой активности растения.


Корневое давление


  Поверхность корня состоит из тонкого слоя клеток, мембраны которых содержат транспортные поры. Это позволяет ионам, таким как Са2 К+, проникать внутрь клеток корня. Энергия для этого активного транспорта ионов поступает от сжигания Сахаров в процессе дыхания, но важнее то, что внутри клеток корня образуется кон-центрированный раствор Сахаров и ионов. По закону осмоса вода будет всегда перемещаться в сторону с более высокой концентрацией ионов, поэтому в этих условиях будет происходить пассивный процесс поступления воды в корневую систему растения. Само растение не может противостоять такому поступлению воды внутрь клеток и одним из проявлений данного процесса является феномен гуттации (выделение капельной влаги на листьях у некоторых растений). Агроном, должен принимать во внимание данный процесс, поскольку он может привести к физиологическим нарушениям (вертикальное и концентрическое растрескивание плодов и стеблей), а также к развитию заболеваний. Действенный инструмент влияния на процесс водопоглощения и корневого давления — стратегия управления влажностью субстрата, включающая мониторинг влажности, концентрации, температуры и т.д.


   Поэтому мы рекомендуем не использовать значительное снижение ЕС питательного раствора в связи с освещенностью (Вт/м2) и прекращать поливы в определенное время до захода солнца. Все это позволяет перед переходом к темному времени суток иметь стабильно высокий уровень ЕС субстрата, что будет ограничивать пассивное поступление воды в корневую систему. ЕС субстрата должна быть минимальной именно в периоды с наиболее высоким уровнем солнечного излучения.


   Корнеобитаемая зона может быть представлена в виде своеобразного двигателя, а транспирация — в виде маховика. Раскрутив маховик путем создания активного климата в первой половине дня, вы получите хороший уровень водопотребления и, соответственно, потребления элементов минерального питания, а так же высокий уровень фотосинтеза. Следует помнить, что в дневное время уровень транспирации в основном зависит от микроклимата в теплице, что в первую очередь обусловлено взаимосвязанной правильной работой отопления и вентиляции.

 

Почему в жаркую погоду я больше поливаю растения, а им ещё хуже ?

При большом дефиците водяных паров в воздухе устьица закрываются и растение старается сберечь ту воду, что еще в нем остается. Поэтому транспирация резко затормаживается и растение уже не в силах потреблять воду из корневой части. Природный насос не работает. Повышение относительной влажности воздуха (ее легче измерить, чем дефицит водяных паров, хотя ДВП величина абсолютная, а ОВВ относительная) при перегревах позволяет вновь запустить этот "насос" или предотвратить его остановку.
В любительских теплицах летом очень часто можно видеть, как растения от жары вянут, а усиленный полив при этом только ухудшает положение - листьям не хватает воды, а корням воздуха.


Уважаемые спамеры, никакие HTML теги и прочие не поддерживаются. Добропорядочных граждан это правило не касается.
Комментарии
Защитный код
Обновить